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ABSTRACT

Context. Prominences are cool, dense clouds suspended within the solar corona. Their in situ formation through the
levitation-condensation mechanism is a textbook example of the thermal instability, where a slight energy imbalance
leads to a runaway process resulting in condensed filamentary structures embedded within the concave-up portions of a
flux rope. The detailed interplay between local radiative losses and the global heating of the solar corona is investigated
here for prominence-forming flux rope structures.

Aims. We begin by exploring the influence of two classes of commonly adopted heating models on the formation behaviour
of solar prominences. These models consider either an exponential variation dependent on height alone, or local density

and magnetic field conditions. We_highlight and address some of the limitations inherent to these early approximations
by proposing a new, dynamic 2D flux rope heating model that qualitatively accounts for the 3D topology of the twisted
flux rope field.

Methods. We performed 2.5D grid-adaptive numerical simulations of prominence formation via the levitation-
condensation mechanism. A linear force-free arcade is subjected to shearing and converging motions, leading to the
formation of a flux rope containing material that may succumb to thermal instability. The eventual formation and
subsequent evolution of prominence condensations was then quantified as a function of the specific background heating
prescription adopted. For the simulations that consider the topology of the flux rope, reduced heating was considered
within a dynamically evolving ellipse that traces the flux rope cross-section. This ellipse is centred on the flux rope axis
and tracked during runtime using an approach based on the instantaneous magnetic field curvature.

Results. We find that the nature of the heating model is clearly imprinted on the evolution and morphology of any
resulting prominences: one large, low-altitude condensation is obtained for the heating model based on local parameters,
while the exponential model leads to the additional formation of smaller blobs throughout the flux rope which then
relocate as they tend towards achieving hydrostatic equilibrium. Finally, a study of the condensation process in phase

space reveals a non-isobaric evolution with an eventual recovery of uniform pressure balance along flux surfaces.
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1. Introduction

Prominences are cool, dense plasma structures in the so-
lar corona, suspended by the magnetic field. They are
usually found above polarity inversion lines (PILs) — fea-
tures found in magnetogram observations where the nor-
mal component of the photospheric magnetic field changes
sign (Mackay et al. 2010; Vial and Engvold 2015; Gibson
2018). In recent years, many high resolution simulations
have been performed, both in 2D and 3D, that have in-
vestigated prominence formation through various mecha-
nisms. These mechanisms usually require the magnetic field
topology local to the condensations to be concave upwards
with respect to gravity; levitation against gravity is facil-
itated by means of the magnetic Lorentz force (pressure
and tension), as first shown by the self-similar model of
Kippenhahn and Schliiter (1957). Generally speaking, two
main formation processes are discerned: (i) evaporation-
condensation, where localised footpoint heating of a mag-
netic arcade produces upflows which collect in any pre-
existing dipped fields (Xia et al. 2012, 2014; Xia and Kep-
pens 2016) — a theory shared with the phenomenon of coro-

nal rain (Li et al. 2021); and (ii) levitation-condensation
(Kaneko and Yokoyama 2015, 2018; Jenkins and Keppens
2021) or its variant reconnection-condensation (Kaneko and
Yokoyama 2017), where a flux rope is dynamically formed
through shearing and converging motions at lower altitudes
— a sheared magnetic arcade, whose footpoints are subject
to those motions, eventually changes internal connectivity
via magnetic reconnection and builds a twisted, helical field
(van Ballegooijen and Martens 1989). In doing so, the re-
connection may redistribute or scoop up material from the
chromosphere or lower corona, which remains suspended
by the flux rope (levitation). The condensation aspect of
all three formation mechanisms relies on a runaway cooling
effect triggered by perturbations to the energy loss rate, in
other words density and temperature variations, known as
the thermal instability (Parker 1953; Field 1965).

The thermal instability is of paramount importance in
many fields of astrophysics. The process leads to the for-
mation of filamentary structures, providing an excellent al-
ternative to the gravitational instability in the interstel-
lar medium (Jennings and Li 2021) or galaxy clusters (Qiu
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et al. 2020). Numerical implementations commonly assume
a purely optically thin ambient medium, such as is the case
for the solar corona, where energy transported as radia-
tion is able to ‘free-stream’ outwards. Since perturbations to
density and temperature can lead to local increases in these
radiative losses, variations feed back into the energy balance
so as to yet further increase the density and decrease the
temperature. The criteria that govern the (in)stability of
this delicate equilibrium were first formulated by Parker
(1953) and fully established through the seminal work of
Field (1965). The latter author obtained an analytic disper-
sion relation in an idealised setting that governs the linear
behaviour of the mode. Recently, Claes and Keppens (2019)
and Claes et al. (2020) revisited these results and numeri-
cally studied a local coronal volume pervaded by interact-
ing slow magneto-acoustic waves in 2D and 3D settings,
respectively. The authors showed that the thermal mode
eventually takes over, with flows along the magnetic field
that drive material towards a thermally unstable location,
leading to the formation of a filamentary structure initially
oriented almost perpendicular to the magnetic field. Sub-
sequent small differences in ram pressure from both sides
force the redistribution of these structures along the mag-
netic field; in 3D, an intriguing misalignment was found
between the condensations and the magnetic field. How dif-
ferent cooling curves impact the above process was investi-
gated by Hermans and Keppens (2021), who introduced a
bootstrap measure such that extremely thin filaments could
be handled at unprecedented numerical resolutions. Further
evidence for the importance of thermal instability within
the solar atmosphere was recently provided by Claes and
Keppens (2021), who examined the full magnetohydrody-
namic (MHD) spectrum of a realistic stratified and mag-
netised atmosphere. The study highlighted that much of
the solar chromosphere, transition region and corona can
be liable to unstable or overstable magneto-thermal modes.

The recent study of Jenkins and Keppens (2021) con-
sidered the formation and evolution of 2.5D flux rope—
prominence systems via the thermal instability as a com-
ponent of the common levitation-condensation mechanism
(Kaneko and Yokoyama 2015). Their solar coronal model
adopted an exponential background heating profile meant
to balance the local radiative and conductive losses of the
system governed mechanically by hydrostatic equilibrium
(Fang et al. 2013). Once the flux rope—prominence sys-
tem formed, the simulation yielded high-resolution demon-
strations of the dynamic formation of prominence conden-
sations via the thermal instability. The authors clarified
how the fully non-linear evolution can be related to se-
quential linear MHD mode stability considerations, with
the thermal mode driving the condensation process. In their
2.5D simulations, the field-aligned thermal conduction term
within their energy equation in essence thermally isolated
the flux rope plasma from the background corona, but the
time-independent, exponential background heating compo-
nent still supplied a small but non-negligible contribution
to this plasma at all times. This directly influences the ther-
mal balance and in turn artificially lengthens the formation
timescales of thermal instability (Hermans and Keppens
2021). This aspect is of critical importance when consider-
ing the dynamic formation, evolution, and decay processes
in prominences, for instance the timescales of prominence
mass recycling, as recently highlighted by the pioneering
work of Kaneko and Yokoyama (2018). It should be stated
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that thermal instability in the context of solar prominence
formation also depends on the presence of the chromosphere
and transition region (Klimchuk 2019). Through thermal
conduction, much of the energy of the solar corona is trans-
ported downwards, which can provide a more efficient mech-
anism for energy loss than through radiative losses alone.
Moreover, the inclusion of the extra mass reservoir opens
the aforementioned evaporation-condensation evolutionary
pathways to modifying the eventual properties of the promi-
nence material.

The thermal instability relies on the intricate bal-
ance between energy loss, gain, and transport mechanisms.
Within the solar corona this balance is generally regulated
by ambient heating, downwards thermal conduction and op-
tically thin radiative cooling, with additional considerations
for compression and Joule heating, for instance. However, as
the cause of the 1 MK solar corona remains a long-standing
open problem, often ad hoc background heating models are
artificially imposed. Two classes of artificial heating mod-
els are generally discerned (Mandrini et al. 2000). The first
class describes the heating rate as a function of height in
the corona based on observations or theoretical models, typ-
ically formulated assuming an exponential decrease with
height as in Jenkins and Keppens (2021) (see, e.g. Sturrock
et al. (1996), for the observational basis, but also Fang et al.
(2013), Xia and Keppens (2016), Zhao et al. (2017) and Fan
(2017) for similar numerical implementations). The second
class considers physically or observationally derived scaling
laws inside coronal loops (e.g. Dahlburg et al. 2018), but
the models can be applied more generally to the solar atmo-
sphere. These scaling laws provide a parameterised heating
rate based on local plasma conditions,
H~ BPLY, (1)
where B is the magnetic field strength, p the density, and
L the length of the field line through the local volume. This
heating model is characterised by the combination of pow-
ers (a, f3,7). A comprehensive summary of several known
possible mechanisms behind these scaling laws is given in
Table 5 of Mandrini et al. (2000), ranging from reconnec-
tion (DC models) to wave dissipation (AC models), with
dependencies that sometimes include additional parameters
beyond the three given above.

Each of these two classes (exponential or parameterised
through Eq. (1)) of heating prescriptions has been success-
fully employed in simulations of both coronal loops (Mok
et al. 2008, 2016) and prominences (Kaneko and Yokoyama
2015, 2017, 2018; Xia et al. 2012, 2014). Incorporating field
line length dependence is computationally demanding, as it
requires tracing field lines for every cell in the simulation
domain during runtime. This is non-trivial to realise in a
grid-adaptive, parallelised framework like MPI-AMRVAC
(Keppens et al. 2021), although recent work addressing so-
lar flares with electron beam ingredients along evolving re-
connecting field lines used this in Ruan et al. (2021). Mok
et al. (2016) provide an alternative in the context of coro-
nal loop simulations through approximating the field line
length L by the radius of curvature of the magnetic field
R, which is the inverse of the magnetic curvature k. This
first order approximation is valid when the loops are almost
circular. In the context of prominences, however, this ap-
proach proves unable to capture the complex twisted field
that comprises a flux rope.
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In this work, we implement a wide array of heating
prescriptions and compare their influence on prominence
formation through the 2.5D levitation-condensation mod-
els of Jenkins and Keppens (2021). For Eq. 1, a com-
parison between two such heating models, (o, ) = (2,0)
and (a, ) = (0,1), with v = 0, was previously presented
by Kaneko and Yokoyama (2015) as they introduced the
levitation-condensation model. They found that for those
heating models that depend on magnetic field strength,
condensations appear only when the flux rope is formed
through anti-shearing motions, where the arcade footpoint
motions are directed so as to decrease the magnetic shear of
the initial condition. We extend these results here by look-
ing at the morphology and physical properties of the formed
prominences, doing so for each of the aforementioned heat-
ing prescriptions and senses of shear, in addition to a new
‘reduced heating’ model that furthermore approximates the
influence of the L parameter for flux ropes. Moreover, a
phase space distribution of the condensation process reveals
a non-isobaric evolution of thermal instability, where con-
stant pressure is eventually reached along the flux surfaces
that contain the prominence.

In Section 2, we detail the simulation setup used
throughout this work, together with the heating models
that we considered and our method for flux rope tracking.
In Section 3, we list the results from our simulations, which
we further discuss in Section 4.

2. Numerical setup and equations

As already indicated, solar prominences are phenomena
found embedded within the solar corona. Following the orig-
inal levitation-condensation setup of Kaneko and Yokoyama
(2015), we restrict our region of interest to the coronal vol-
ume and neglect the chromosphere below. We consider a 2D
simulation domain in the z — y-plane (horizontal-vertical),
with vector components in the invariant z-direction (hori-
zontal) to complete the 2.5D description. To carry out the
simulation, we make use of the fully open-source, adaptive-
grid, parallelised MPI-AMRVAC toolkit! (Keppens et al.
2021). We simulate a cross-section of 24 x 25 Mm with
x € [-12,12] Mm and y € [0, 25] Mm, taking a base resolu-
tion of 96 x 96 cells with three additional levels of Adaptive
Mesh Refinement (AMR). This yields a maximum resolu-
tion of approximately 24 Mm / (96 x 23) = 31.25 km, which
corresponds to the lower-resolution simulations of Jenkins
and Keppens (2021). The AMR criteria are based on sharp
gradients in the local density and the magnetic field com-
ponents following the Lohner prescription (Lohner 1987).

2.1. Equations and physics
The full set of MHD equations solved by MPI-AMRVAC,

including all non-ideal or non-adiabatic effects and source
terms, are equivalent to (the code actually solves the related

! http://amrvac.org

system using conservative variables),

0
l+V-(pv):0,

ot
ov .
pa+pv~Vv+Vp—JxB—pg:O, (3)
0B
E—Vx(va)—&—Vxnj:O, (4)
T
el VT
Por TeveV

= 1) [pV v+ Ll - V- (R-VD)] =0, (5)

as given in Goedbloed et al. (2019)2. The thermodynamic
variables are related through an equation of state, for which
we use the ideal gas law,

pp = RpT. (6)

Here, p is the mean molecular mass in proton masses m,,
and R ~ 3.81 J K~! is the ideal gas constant. We assume a
monatomic gas so that the ratio of specific heats v = 5/3.
Governing the magnetic field are Gauss’ law for magnetism
and Ampére’s law,

VB:O7 VXB:/'LO.L (7)

where o = 47 is the permeability of vacuum. The (depen-
dent) variables appearing in this closed system of equations,
are the density p, velocity v, gas pressure p, current density
Jj, magnetic field B and temperature T'.

The temperature equation (5) contains energy sinks
and sources within the square brackets. Firstly, the heat-
loss function pL = npnu.A(T) — H contains the net vol-
umetric energy loss from optically thin radiative cooling
nunueA(T) and heating H, with units ergs cm = s=! (Field
1965). We note that the cooling rate depends on the hy-
drogen and helium number densities ny p. and tempera-
ture T through a cooling curve A, constructed using tab-
ulated energy losses. The volumetric heating rate H — al-
though currently unknown — must necessarily depend on a
number of quantities, such as density p or magnetic field
strength B, and we consider a few possibilities throughout
this work (Mandrini et al. 2000). Secondly, Ohmic heat-
ing ~ nlj|? is included in line with the consideration of
magnetic resistivity. The coefficient 7 has an artificially
high value of 2.33 x 108 m? s~!(= 0.002 in code units),
ensuring that we dominate any possible numerical diffu-
sion, and allowing the reconnection necessary during the
early formation phase of the flux rope. Thirdly, anisotropic
thermal conduction V - (8- VT) is included, where for
the parallel component we take the Spitzer conductivity
k| = 8x 1077 T%? ergs cm™! s™* K~! (Spitzer 2006).
Due to being eight orders of magnitude smaller than the
parallel component under coronal conditions, perpendicu-
lar thermal conduction is neglected throughout this study.

The plasma is assumed to be completely ionised (an
assumption that may be invalid inside cool and dense
prominences Hillier 2019; Braileanu et al. 2021a,b), and is
partly composed of helium ions with assumed abundance
nue = 0.1nyg. The mean molecular mass is hence,

p/my _ m +4dnge
n 2ny + 3nHe

w= 0.6. (8)

2 Correcting on a typo in Eq. 3 of Jenkins and Keppens (2021).
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For consistency with earlier work (Jenkins and Keppens
2021), we adopt a non-constant gravitational acceleration,

) s ©
g y gCor (R@ +y)2y7

with y the height above the solar surface and geor =
274 m s~2 the gravitational acceleration at the solar sur-
face, located at radius Rp = 695700 km. In our simulation
domain, the gravitational acceleration falls from g, at the
bottom to 0.93¢co, at the top (y = 25 Mm).

The MHD equations (2)—(4) are solved using a three-
step, third-order Runge-Kutta method with the HLL flux
scheme (Harten et al. 1983). To limit spurious oscilla-
tions, we use the third-order asymmetric CADA3 slope lim-
iter proposed by Cada and Torrilhon (2009). As a diver-
gence fix for the magnetic field, we use the 1inde method
to perform parabolic cleaning (Keppens et al. 2003) and re-
duce monopole errors through the bottom boundary driving
where a second order central differences approximation for
VB = 0 is implemented. MPI-AMRVAC allows for a split
treatment of the magnetic field, fixing a steady background
field By while performing calculations for the perturbed
field By as described by Tanaka (1994), which is also pos-
sible for force-free fields (Xia et al. 2018). Magnetic field
splitting ensures accuracy and efficiency by better captur-
ing behaviour at low plasma-beta. We also solve an auxil-
iary energy equation for the internal energy density so as to
handle typical coronal low-beta regions and replace faulty
pressure values when necessary. For the radiative cooling
physics, we use the Colgan_DM cooling curve by Colgan
et al. (2008), modified for lower temperatures by Dalgarno
and McCray (1972), which is suitable for this study (Her-
mans and Keppens 2021). The cooling curve is interpolated
at 12000 points and calculated at runtime using the exact
integration method (Townsend 2009). A minimal allowed
temperature of 103 K is enforced throughout the simula-
tions, well below the typical minimum temperatures found
in our simulations (~ 7000 K). MPI-AMRVAC uses nor-
malisation of the plasma variables, which is fixed by the
following choice: number density 7y = 10® cm™3, length
L = 10% cm and temperature T' = 10° K.

2.2. Simulation setup

As initial conditions, we set up a stratified solar coronal
atmosphere in hydrostatic and thermal near-equilibrium.
Assuming an isothermal corona at a temperature of Ty =
1 MK and assuming a plane-parallel atmospheric stratifi-
cation, the momentum equation (3) reduces to a separa-
ble ODE if the magnetic field is force-free. The resulting
equation is solved numerically with the trapezoid rule in
our initial conditions, which is numerically convenient and
equivalent to setting the analytic hydrostatic solution. In
hydrostatic equilibrium, it follows from the ideal gas law
(6) that pressure and density feature the same exponential
variation with height,

y y
Po(Y) = Peor €XP (—) s po(y) = peor €Xp (—) ,

H(y) H(y)
(10)
where,
Ry +y . RTy
H(y) = H ,  with Hy = , 11
( ) 0 R@ 0 HGcor ( )
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is a local scale height based on the hydrostatic pressure
scale height Hy ~ 50 Mm and peo, = 0.434 dyn cm ™2 and
Peor = 3.2 x 10715 g cm™3 are the pressure and density
values at the base of the corona, respectively.

The magnetic configuration within the simulation starts
with the linear force-free sheared magnetic arcade By given
by Kaneko and Yokoyama (2015, 2017, 2018) and Jenk-
ins and Keppens (2021). Then the magnetic field strength
varies as,

By(y) = By exp <HZ> .
Here, B, = 10 G is the field strength at the bottom of the
domain. The magnetic arcade has exactly one half period in
the simulation domain with the PIL at z = 0 Mm, setting
an initial shear angle of &~ 9° with the out-of-plane normal.
Our choice of B, corresponds to the strongest magnetic
field considered by Jenkins and Keppens (2021). The field
strength, gas pressure and density share approximately the
same height profile such that magnetic pressure (N BQ) de-
creases twice as fast. The initial sheared arcade prescription
is taken to be the steady background field By used in the
aforementioned magnetic field splitting. An image of this
initial setup can be found in (Jenkins and Keppens 2021,
Fig. 1).

(12)

2.3. Boundary conditions

We take the same boundary conditions described in Jenk-
ins and Keppens (2021), where there is no outflow out of
the domain and the magnetic field is vertical (in line with
the periodicity) at the left and right edges. At the lower
and upper boundary, the magnetic field is extrapolated.
To form the flux rope, we impose the shearing and con-
verging motions at the bottom boundary as originally de-
scribed in Kaneko and Yokoyama (2015). Following these
authors, there is a distinction to be made between shearing
and anti-shearing motions, which increase and decrease the
magnitude of the magnetic field component in the invariant
direction, respectively. The motion is prescribed as,

[ =Va(z,t),
”@”‘{muw,

where V. (x,t) is prescribed following Equations 13 — 17 of
Jenkins and Keppens (2021); the associated 12 km s~! mag-
nitude for driving and shearing motions is then far below
the characteristic coronal Alfvén speed of ~ 442 km s~ 1.
We adopt the driving prescription in time and space from
this work but do not redefine the moment they are initiated
to t = 0. The driving hence begins at t = 1300 s and lasts
until ¢ = 2800 s.

shearing,
anti-shearing,

(13)

2.4. Heating models

We now include an overview of the heating models adopted
in this work, and describe how detailed balance can be
achieved against the initial radiative losses. Since these ini-
tial losses scale as po(y)?A(Tp), they are explicitly known
at t = 0 s using Eq. (10) and Ty, = 1 MK. For the required
initial thermal equilibrium, any heating model has to fulfill
the condition that there are no initial net energy losses or
gains:

0= poﬁo = pgA(To) - Ho. (14)
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2.4.1. Exponential and mixed heating models

The first heating model is time independent and is hence
completely determined by condition (14), as in for in-
stance Claes and Keppens (2019) and Hermans and Kep-
pens (2021). The heating rate then falls exponentially with
height, since it is the absolute value of the initial cooling
rate. We henceforth refer to this model as the exponen-
tial heating model, or model E. The heating prescription,
which has been successfully implemented by many previ-
ous authors (Fang et al. 2013; Xia and Keppens 2016; Zhao
et al. 2017; Jenkins and Keppens 2021) then becomes:

2y
H = p?,, A(Ty) exp (—) . 15
() e (-7 (15)
A second class of heating models is based on those heat-
ing scaling laws deduced for coronal loops. The mixed heat-
ing model, or model M, is of the general form,

H = cBYp°, (16)

where (a, ) € R? and c¢(y) is a function determined by the
equilibrium condition (14). Instead of using Eq. (12) for the
initial magnetic field strength, we approximate it with the
exponential profile with varying scale height for convenience
in the expression below. This sets up an approximate initial
equilibrium which relaxes during the first 1300 s, with the
initial background heating given by,

ay

Ho = c(y) By exp <H(y)> Piyr €XD (I%) : (17)
The function ¢(y) can then be found as,

sl (2—a—By
cly) = TgA(TO)eXP (_H(y)) ) (18)

where the adopted approximate magnetic scale height al-
lows the exponentials to be combined. We note that choos-
ing a + f = 2 makes ¢ a constant. This is preferable both
from a theoretical and practical point of view: if o + 3 # 2
then there is still a steady, exponential component to the
heating, losing the truly local nature of the heating model
and maintaining the potentially unphysical residual heat-
ing to the flux rope. Hence, all the mixed heating models
considered in this work are chosen to satisfy a + 5 = 2, as
in the model (a, 8) = (2.5, —0.5) used by Mok et al. (2008).

Indeed, heating prescriptions depending on local pa-
rameters have been used before, most notably by Mok
et al. (2008) and Kaneko and Yokoyama (2017) in its two-
parameter form above. Several other combinations of pa-
rameters («, 3) have been used throughout the literature,
most often with 8 = 0 so as to obtain a heating rate that
depends purely on the local magnetic energy density, here-
after model MO (magnetic heating) (Kaneko and Yokoyama
2015, 2018; Xia et al. 2012, 2014). We investigate the influ-
ence of models using a small, but increasingly, negative 8 on
the prominence formation, which we term models M1 (quasi-
magnetic heating, 8 = —0.1), M2 (8 = —0.2), and M3 (Mok
et al. 2008, = —0.5) — an overview of the models used in
this work and their prescription is given in Table 1. With
the inverse density dependence, the heating prescription is
meant to be magnetic energy-based, but with an additional
‘penalty’ for regions of increased density. When performing
prominence simulations, this is a desirable property since

then the heating rate will decrease in any locations subject
to a density enhancement. We note that the previous expo-
nential heating model E is equivalent to the mixed heating
model with choice (a, 8) = (0, 0).

2.4.2. Reduced heating model

Finally, we propose a new heating model pertaining to 2.5D
prominence formation simulations that effectively approx-
imates the true 3D nature of a flux rope. We want to ac-
count for the ignored variation in z, and note that a flux
rope within the solar atmosphere is typically characterised
by extended field lines of some hundred Mm. Kaneko and
Yokoyama (2017) demonstrated that inside a flux rope,
longer field lines preferentially cool down and host con-
densations notwithstanding a heating prescription that did
not explicitly trace field lines. By assuming the action of
heating instead scales exponentially along field lines rather
than simply with height (many 1D hydro models of promi-
nence formation exist which inherently support the rele-
vance of the field line length to the condensation process;
see, e.g. Karpen and Antiochos 2008; Klimchuk and Luna
2019; Pelouze et al. 2022), we may argue that the flux rope
should experience a reduced heating rate in its central por-
tion compared to the footpoint regions. In the 2.5D MHD
scenario studied here, we thereby want to incorporate how
field lines in 3D have varying lengths throughout our flux
rope cross-section.

To this aim, we apply a time-dependent heating re-
duction that follows the flux rope cross-sectional shape
throughout the simulations. This requires a dynamic detec-
tion of the flux rope during runtime, for which we propose
a method that relies on the 2.5D local magnetic field cur-
vature (i.e. curvature defined using the 3D magnetic field
vector but omitting gradients in the z-direction). Such a
local prescription removes the need for tracing the global
field associated with the flux rope. This resulting reduced
heating model is applied to both the exponential heating
model (now termed RE) and the mixed model (RM) so as to
approximate the thus far ignored dependence of the general
heating model (1) on field line length L inside the flux rope.

The flux rope cross-section at time ¢ is modelled as an
ellipse centred at (zo(t),yo(t)), coinciding with the cen-
tral flux rope axis, which appears as a magnetic null point
(O-point) in the 2D projection. The ellipse’s major (a(t))
and minor (b(t)) axes are given as the distance from the
centre to the vertical and horizontal edges of the flux rope,
respectively. After these parameters have been determined
in the current timestep (see Appendix A), the volumetric
background heating rate ; is transformed following,

Ho=f(u) x Hp, flu)=1=¢ge I +l"/1084, (19)
where,

_(T—Z0 Y—Yo
v ( 0.85b ' 0.85a ) ’ (20)

is a coordinate transformation centred on the flux rope
axis and scaled according to its dimensions. The reduc-
tion function f is shown in Fig. 1 and takes values between
[1 — §,1] since the exponential is normalised by its max-
imum of 1.284. To ensure that f does not influence the
regions external to the flux rope, we scale a and b by 0.85
in the coordinate transformation. The above form for the
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Reduced heating rate inside flux rope

o
o]

o
)

o
>

Reduction factor

o
[N}
X

o
o

S [ ——

o

Xo—b Xo+b

X

Fig. 1: Cross-section f(z,yo) of f along the horizontal flux
rope axis. Heating is reduced most at the flux rope edges
since the field lines are longer. Outside the flux rope, there
is no reduction as f = 1.

reduction function was chosen so as to reflect the structure
of a theoretical twisted flux rope, that is, the field lines
at the centre of the flux rope are less twisted and hence
shorter than those field lines that form the ‘boundary’ with
the corona (cf. Titov and Démoulin 1999). For a heating
rate that varies exponentially along field lines, this leads to
modest = 60% reduction along the central axis of the flux
rope that increases radially away from the central axis up to
the flux rope boundary where f returns smoothly to a value
of 1 (see Fig. 1). Figure 2 features several snapshots of the
reduced heating model RM1 applied during runtime, where
the flux rope appears as the region of closed poloidal field
lines. The volumetric heating rate is seen to be of the order
of 107* — 1073 ergs cm 3 s~!, which corresponds to values
typically taken in literature (e.g. Antiochos and Klimchuk
1991; Dahlburg et al. 1998). At the PIL however, the heat-
ing rate greatly increases due to the increased magnetic
pressure from bringing the loop footpoints together during
the shearing and converging period.

The maximal reduction in heating rate inside the flux
rope is controlled by the parameter §, which is loosely con-
nected to the 3D length of the flux rope. The relation be-
tween 6 and L can be approximated assuming that the heat-
ing rate H falls exponentially along field lines: let s be the
arc-length coordinate along the central axis of the flux rope,
which has length L, where our simulation domain consists of
a vertical cross-section at sy = 0. Then the loop footpoints
are at s = :I:%. Assuming the decay length of H equals the
pressure and magnetic scale height Hy ~ 50 Mm, we can
derive L from 4:

(1 1) = oo (+5) = 22 8)

& L =-2Hplog(1l —6/1.284).
(21)

For the reduced exponential heating model, RE (6 = 0.8),
this amounts to a flux rope length of L = 96.6 Mm, while for
the reduced quasi-magnetic heating model, RM1 (§ = 0.9),
we have L = 119.5 Mm. These numbers fit well within
the observed range of prominence lengths summarised by
Parenti (2014).
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3. Results

In our simulations, a flux rope forms through multiple
reconnection events, creating a 2D structure of poloidal
nested flux surfaces, alternately hotter and cooler as a result
of mergers of multiple subordinate flux ropes — a detailed
description can be found in Jenkins and Keppens (2021).
With the flux rope fully formed after 2800 s, the energy
injection into the plasma as a consequence of the formation
process ceases. From then on, the thermodynamic prop-
erties of the dense material suspended by the concave up-
wards field are thus governed primarily by the ratio between
the heating and cooling terms of the energy equation. Un-
der the conditions that the local cooling term dominates
over the combined influence of the heating or conduction
terms, the associated plasma may become unstable to the
thermal instability. However, and as we shall henceforth
show, when, how, and whether this happens at all depends
directly on the adopted heating model in combination with
the (anti-)shearing motions involved in the initial formation
of the flux rope.

3.1. Condensation phase

Table 1 summarises the different combinations of heat-
ing models and footpoint motions under consideration
and whether thermal instability occurs, in analogy with
(Kaneko and Yokoyama 2015, Table 1). In Sects. 3.1.1 —
3.1.4, we look at how the flux rope material reacts to these
different prescriptions.

3.1.1. Exponential heating model

Model E contains a steady background heating rate that de-
creases exponentially with height. We consider a flux rope
formed through positive shearing motions, as in Jenkins and
Keppens (2021), and find similar overall evolution: a dense
cloud suspended by the magnetic field collapses following
the condensation process described in Claes and Keppens
(2019). That is, radiative losses increase, resulting in a de-
crease of temperature and increase of density, which again
enhances the radiative losses and leads to a runaway evolu-
tion; matter is accreted along each flux surface, producing
a condensation perpendicular to the magnetic field, typical
of the thermal instability in 2D (Claes and Keppens 2019;
Hermans and Keppens 2021). After the two main condensa-
tions form at around y = 3 Mm and 4.5 Mm, some smaller
condensations appear at various locations along the outer
flux surfaces of the flux rope. These smaller blobs then fall
down along the magnetic field under the effect of gravity,
reaching speeds up to 190 km s~! and eventually join the
larger condensation. Imbalances in the velocities of inflow-
ing material deform the smaller condensations as they move
downwards. The momentum of the plasma gained through
falling results in sloshing motions of the prominence body,
with distinct oscillation periods along each flux surface. To-
wards the end of the simulation, the material slows down
and the condensed material reaches relative equilibrium,
during which the prominence sinks as a whole due to en-
hanced (n = 0.002) mass slippage over the field lines (Low
et al. 2012; Jenkins and Keppens 2021).
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Heating model Shearing Condensation (erf‘f“z’;n_g) 7{%‘)“
Exponential E  p5A(Ty) + Y 3.84 7529
Mixed M cBYpf

Magnetic MO cB? - Y

Quasi-magnetic M1 ¢cB?1p=01 + N
- Y 2.50 8503

M2 ¢cB?2p~02 + N

- Y

Mok et al. (2008) M3 ¢B%*5p705 - Y
Reduced exponential RE  f(u) x p3A(Tp) + Y 3.08 9196
Reduced mixed RM1  f(u) x cB%1p=01 + Y 6.37 8551

Table 1: Adopted combinations of heating models and shearing motions with their outcomes. Each model has an ab-
breviation for further reference. Shearing and anti-shearing motions are denoted by + and —, respectively. For those
simulations that were advanced far into the prominence evolution, physical values are considered at t = 6741 s. Both
maximum number density and minimum temperature are assumed to be reached in the prominence core.
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Fig. 2: Demonstration of parameterised heating combined with the reduced background heating (RM1) inside the flux
rope, which is tracked during the simulation. Panels a and b feature zoom-ins of the domain.

3.1.2. Mixed heating models

The similar study of Kaneko and Yokoyama (2015) previ-
ously concluded that in situ prominence formation is in-
hibited when positive shearing motions are coupled with a
heating model ‘H ~ B, while coupling the motions with a
model H ~ p does produce condensations. In agreement
with their results, we find no condensations in our posi-
tive shearing simulations with mixed —0.2 < g < 0
models MO, M1, M2, but rather hot material at a tempera-
ture of about 6.3 MK. Since the temperature of the plasma
within the flux rope constructed using the positive shear-
ing M2 model was so high, we did not test a positive shear-
ing M3 configuration with a@ = 2.5. Forming the flux rope
through anti-shearing motions, however, does produce con-
densations. These have similar characteristics for all mod-
els, yet are quite distinctive from those obtained with the
exponential heating model. In particular, the results for the
quasi-magnetic heating model (o, 8) = (2.1, —0.1) closely
match those for the magnetic heating model («, 8) = (2,0).
For MO —M3, thermal instability initiates at around the same
time (¢t = 3250 s). Figure 3 shows the density and temper-
ature evolution for the quasi-magnetic M1 model with anti-
shearing motions. Here, one large monolithic condensation
forms at the bottom of the flux rope. Post-formation, the
prominence is seen to expand and descend (Panels ¢ and
d of Fig. 3), while its top moves due to asymmetric in-

flows. Unlike in the other simulations, parts of the bottom
atmosphere become thermally unstable due to the back-
ground heating decrease by the anti-shearing motions. As
the resulting coronal rain forms outside of the flux rope,
it falls down along the open field lines. However, the bot-
tom boundary in our setup does not allow the material to
leave the coronal domain as a chromosphere has not been
included, and hence the condensations remain unphysically
suspended above the bottom boundary. As the prominence
body grows, its lower end makes contact with the flux sur-
face on which these condensations reside. To allow for an
analysis of the prominence characteristics, we applied an
additional consistency check (for V- B = 0) to the bottom
boundary, which slightly increases the temperature inside
the subordinate flux ropes due to increased dissipation of lo-
calised currents. This subsequently disconnects the promi-
nence material from these ‘coronal rain’ blobs, and enables
an analysis of the prominence material up to up to t=6741
s. After this time, the blobs do connect to the flux surface
of the main prominence body and we end the analysis.

3.1.3. Reduced exponential heating model

Model RE combines the exponential heating model with the
reduction function f that dynamically modifies the heating
rate inside the flux rope, as explained in Sect. 2.4.2. One
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Fig. 3: Density and temperature evolution for the simulation performed with quasi-magnetic heating (M1) and anti-
shearing motions. One monolithic condensation forms, growing and descending at a later stage in its evolution. A movie
of this figure, where the coronal rain blobs outside of the flux rope are also featured, is available with the online version

of this manuscript.

can thus expect that the simulations will be identical up
until the flux rope formation is initiated (¢ = 1300 s). We
therefore initialise the RE simulation with the one for model
E at that time. Since we choose § = 0.8, the heating rate is
reduced in the core of the flux rope to approximately 40%
of its original value, and to 20% near the edges.

Figure 4 shows the first large condensation to form
around 3000 s at a height of around 8 Mm. Generally
speaking, condensations occur in every other flux surface,
as a result of the temperature alternating between hotter-
cooler due to the preceding mergers of several secondary
flux ropes. Some condensations consist of only one blob,
some consist of a blob on either side of the central verti-
cal axis which fall down and collide. After the collision, a
shock-like feature is seen to propagate away from the impact
location which resembles the shocks seen at the collapse of
condensations within previous simulations of the thermal
instability (cf. Claes et al. 2020). Thermal instability re-
mains relevant up to ¢t = 4700 s, after which no additional
condensations form as most of the dense matter bound by
the flux rope has already cooled down.

Most condensations fall down rapidly along field lines
under the effect of gravity, overshoot the concave-up por-
tion of the domain due to their finite kinetic energy, before
subsequently performing damped oscillations about z = 0
with different periods along each field line. Some smaller
blobs move upwards as a result of upflows and changing
pressure conditions as a result of material evolving else-
where within the flux rope. This is, however, a consequence
of the 2.5D description of the flux rope, where the poloidal
field line of a flux surface connects plasma elements that
would not necessarily be connected in a 3D description of
the flux rope. Strikingly, both of these condensations even-
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tually evaporate while falling down at around 5000 s before
reaching the main prominence body. After these condensa-
tions disappear, much of the material inside the flux rope
has collected in the extended prominence, whereas the den-
sity of the hot material in the flux rope drops to about 20%
of the ambient coronal density. As highlighted well in the
online movie that accompanies Figure 4, the large promi-
nence appears to have a significant effect on the hosting
flux rope, clearly deforming the field line topology despite
the strong 10 G field. As in the simulations with the mixed
heating model, the bottom of the prominence sinks and
compresses field lines, leading to an increased perpendicu-
lar current density. The outer flux rope shell is heated upon
compression by the material at the bottom of the domain,
as is evident from Panel d of Fig. 4. At the same time,
the temperature at the flux rope centre greatly increases
through resistive heating and mass slippage of the promi-
nence top.

3.1.4. Reduced quasi-magnetic heating model

Finally, we perform a simulation with the reduced quasi-
magnetic heating model (RM1) and a flux rope formed
through shearing motions. In Sect. 3.1.2, it was shown
that models M combined with shearing motions produce too
hot a flux rope for thermal instability to occur, analogous
to Kaneko and Yokoyama (2015). However, observational
studies have long asserted that shearing motions are ubiqui-
tous to PILs and hence transfer complimentary shear to any
associated magnetic arcades that straddle this divide (e.g.
Athay et al. 1986). Remarkably, through the dynamic cross-
sectional heating reduction, this contradiction is overcome,
although outside of the flux rope the heating model does
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Fig. 4: Density and temperature for flux rope formed by shearing motions with reduced exponential heating model. All
over the flux rope, condensations form and fall down along the magnetic field, collecting in one large prominence body.
A movie of this figure is available with the online version of this manuscript.

still lead to high temperatures. As can be seen in Fig. 2,
the heating rate at the vertical edges at || = 12 Mm in-
creases up to order 1073 ergs s~! cm ™ due to low density
and high magnetic pressure, leading to downflows that fur-
ther decrease the local density. One filamentary condensa-
tion appears at the bottom of the flux rope (Fig. 5) around
3850 s.

The condensation closely resembles those obtained with
models M and anti-shearing motions, but is larger. Again,
we observe shock-like features emanating from the initial
cloud out along the magnetic field when it collapses. Even
though the heating rate is reduced, thermal instability re-
mains absent from the central region of the flux rope, which
consequently only contains hot material. The prominence is
seen to grow from its lower end, probably as a consequence
of the high-density region at the bottom, which reduces
the local heating rate in model M1, in combination with the
mass-slippage mechanism previously remarked upon within
these models (Low et al. 2012; Jenkins and Keppens 2021).

3.2. Comparison of the heating models

Table 1 summarises the outcomes for the combinations of
heating models and footpoint motions considered, anal-
ogous to Table 1 in Kaneko and Yokoyama (2015). We
find those heating models based on local parameters to re-
quire anti-shearing motions in order to produce conditions
suitable for prominence formation. Applying the ad hoc,
masked heating reduction inside the flux rope re-enables
the possibility of condensation formation with shearing mo-
tions.

The locations of condensation formation vary between
the heating prescriptions but remain governed by the imbal-
ance between heating and cooling and the stabilising effect
of thermal conduction. Figure 6 features the net heating
rate along a vertical cut over the y-axis, immediately af-

ter the flux rope has fully formed. The regions of negative
net heating rate at this instant indeed correspond well to
those flux surfaces that ultimately experience the in situ
condensation shown in the first panels of Figs. 3, 4, and
5. In particular, model RE is seen to lead to a net cooling
rate over the entire flux rope, which enables most of the
levitated material to cool and rain down.

The evolution of the mean magnetic energy density over
the domain for the four selected simulations that produced
condensations, detailed in Fig. 7, shows clearly the distinc-
tion between shearing and anti-shearing footpoint motions:
the former store energy in the magnetic field while the latter
decrease the magnetic shear and hence also the value of B,.
In the initial relaxation phase the magnetic energy evolu-
tion is comparable for all simulations. The abrupt change at
1300 s is due to the activation of the driven boundary mo-
tions, bringing the footpoints of the initial arcade together
and hence driving an energetic evolution of the system. On a
related note, there appears to be a relationship between the
direction of shearing motions and the number of additional
subordinate flux ropes appearing with the current value of
7: shearing motions consistently lead to the formation of
four large subordinate flux ropes that merge with the main
flux rope, while anti-shearing motions produce only two.

An analysis of the maximum temperature over the sim-
ulation domain reveals the influence of the heating models
on the flux rope and the ambient atmosphere. The mixed
models can be ranked according to the power « for the
magnetic field strength: a higher o produces a hotter at-
mosphere and flux rope regardless of shearing direction.
Ordered by increasing maximum temperature, we have MO—
M1-M2-M3. When the flux rope has fully formed after 2800 s,
the maximal temperatures within the mixed models are of
the order of 8 MK. For the models with reduced heating,
the temperatures are then much lower at around 4 — 5 MK.
This is clearly the influence of the diminished heating rate
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Fig. 5: Density and temperature for flux rope formed by shearing motions with reduced quasi-magnetic heating model.
One monolithic condensation forms at the bottom of the flux rope, visibly containing more mass than for the unreduced
mixed heating model in Fig. 3. A movie of this figure is available with the online version of this manuscript.
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Fig. 6: Cut along the y-axis showing the net heating rate,
—pL, when the driving motions end. Regions where the
energy transfer rate is negative are more prone to thermal
instability.

inside the flux rope. For model RE, the maximum tempera-
ture also increases at a slower pace due to the lower heating
rate inside the flux rope: the centre of the flux rope there-
fore heats mostly due to resistive Ohmic dissipation (Joule
heating). Another effect is that the maximum temperature
of model RE levels out soon after the shearing motions end,
while it continues to increase for the other heating models.
However, at around 5000 s, resistive heating in the flux rope
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Fig. 7: Mean magnetic energy density evolution over the
domain for models E, M1, RE and RM1. Shearing motions
increase the magnetic energy, anti-shearing motions lead to
it decreasing.

centre becomes more significant and increases the temper-
ature out of equilibrium for model RE as well.

We present the minimum temperature evolution for
models E; M1, RE and RM1 within Fig. 8. This temperature
is exclusively reached inside the condensations and promi-
nence body, which we limited to || < 3 Mm for the run
with model M1 as to exclude the coronal rain from the anal-
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Fig. 8: Evolution of the minimum temperature for models E,
M1, RE and RM1. The minimum temperature decreases non-
exponentially to less than 10* K, with apparently higher
growth rates for the reduced models.

ysis. The late phase, post-condensation temperatures are
found in the range 6000 — 10000 K, which are values well
above the artificial minimum of 103 K adopted in our simu-
lations. For both the original and the reduced heating mod-
els, the minimum temperature decreases non-exponentially,
although a satisfactory exponential fit can be obtained for
models E and M1 nonetheless. This is not unexpected, as the
reduced heating models impose conditions out of thermal
equilibrium, which could explain the sharp decrease in tem-
perature as a non-linear perturbation. It is hence non-trivial
to map the initial growth rate of thermal instability to the
evolution into the non-linear regime, as was previously pos-
sible in the thermal instability simulations of Claes and
Keppens (2019). Nevertheless, we find approximate growth
rates w; = 0.002 s~! (model M1), w; = 0.004 s~ (model
E) and w; ~ 0.007 (R-models), which agrees well with an
estimate from linear theory based on the local parame-
ters, and neglecting thermal conduction and resistivity, of
w; ~ 0.001 s~

The evolution of the average prominence, and maximum
domain densities for models E, M1, RE, and RM1 is presented
in Fig. 9, wherein the occurrence of the first condensation is
marked with a vertical black line. We see that the reduced
heating model RE leads to the development of condensa-
tions at an earlier time than model E. For models M1 and
RM1, this behaviour is flipped as a result of the accompany-
ing shearing motions in the second case, which lead to less
favourable conditions to in situ condensation since the field
strength and hence heating rate increases.

To calculate the average prominence density, we define
the prominence material as having: T < 25000 K and
p > 1171 x 107 g/ecm?® (= 50 code units), and in the
case of model M1 limit the analysis to |x| < 3 Mm. In all
cases, the maximum density is reached at the bottom of
the prominence, as a result of the larger-area flux surface
encapsulating more material. The small peak towards the
end for model RE is, however, reached in the prominence
top when it compresses due to field slippage. We find both
the maximum density of condensations produced by model
RM to be consistently higher than those obtained with the

other models. This is most likely related to the nature of the
mixed model, which reduces heating in regions of increased
density and hence the material is more free to cool and con-
tract in turn. A similar phenomenon may occur with model
M if the simulation were extended without interference by
the coronal rain. In terms of average prominence density,
models E and M are found to outclass those for the reduced
models by a factor two. We find this to be a consequence
of the larger condensations created by the reduced heating
models, where the additional volume is provided by mate-
rial of lower density. Hence, the distribution of prominence
densities with these modified models is concentrated around
lower values (see also Sect. 4.3).

We present the evolution of both prominence mass and
area for models E, M1, RE, and RM1 in Fig. 10. We note imme-
diately that the two reduced heating models produce larger
and more massive prominences compared to the ‘original’
models, with a mass increase of about 30% for model E and
160% for model M1, and increase in area by a factor three.
A similar observation applies to models (R)E compared
to models (R)M: the mixed models produce significantly
less massive condensations, with even the reduced heating
model RM1 being barely able to outpace model E. The result-
ing condensations are however comparable in terms of area.
Mass increase with model RE stabilises around 6000 s when
the last condensations have either rained down or evap-
orated. For models (R)E, the prominence mass stabilises
only briefly before decreasing due to evaporation of mate-
rial within the prominence ‘monolith’, at rates of —0.2 and
—0.15 g ecm ™! 57!, respectively. In the later stages of evo-
lution, both simulations with the exponential models show
a decreasing area as a consequence of the concentration of
plasma at the concave upwards portions of the magnetic
topology over time. Under these conditions the extent of
the plasma along a flux surface is increasingly governed
solely by the local pressure-scale height.

In addition to the size of condensations, the total area
evolution also contains information on the oscillations of
condensed material in the dipped magnetic field as men-
tioned above and visible in Figs. 4 and 5. Extracting the
period of the largest oscillatory motions from the periodic-
ity in the area evolution, we find dominant periods of 335 s
for model E, 904 s for model RE and 840 s for model RM1. We
explore this in more detail in Sect. 4.4. The quasi-magnetic
heating model M1 does not lead to any oscillations since
the single condensation forms in-place at the locations of
concave-up magnetic topology.

3.3. Phase space evolution

Criteria for the initiation of the thermal instability have
been derived under both isochoric and isobaric criteria
(Parker 1953; Field 1965). To ascertain which of these ap-
proximations is more consistent with the evolution found
within our prominence condensations, we now look at the
p~! — T phase space, shown in Fig. 11, at several snap-
shots for the simulation with model RE. The coloured di-
agonal lines indicate the pressure isocontours governed by
the normalised ideal gas law p = pT'. The distribution is
coloured by total volume of cells in the simulation domain
that correspond to a certain bin in phase space, and hence
contains information on the physical extent of regions in
phase space. A similar analysis was performed by Waters
and Proga (2019) for unmagnetised astrophysical fluids. In
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Fig. 9: Evolution of maximum (solid) and average (dashed) density for models E, M1, RE and RM1. Black line indicates

the appearance of the first condensation.
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quasi-magnetic heating models (dashed) and their reduced
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reduced heating models lead to larger prominences.
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contrast to their analysis, we do not use the concept of an
‘S-curve’ of thermal equilibrium conditions, but instead the
qualitative description of the phase evolution of thermal in-
stability.

Initially, the atmosphere is isothermal with a vary-
ing density profile due to hydromagnetostatic equilibrium,
which translates to a horizontal line in the p~! — T dia-
gram (Panel a). As time progresses, the atmosphere begins
to heat and the distribution in phase space takes on complex
shapes when the coronal loop footpoints are driven. After
some time, the thermal instability is initiated and a branch
towards the cold, dense lower left corner of the state space
domain splits off (Panels ¢ and d). The abrupt cooling of
the material seems to follow the pressure isocontours fairly
well in the initial stage at ¢ = 2903 s, but the branch is seen
to cross several isocontours soon afterwards and follows a
more vertical and hence more isochoric path. In Panel e,
the evolution of the condensation at its coolest point hap-
pens under almost isothermal conditions as a consequence
of the significant drop in radiative losses at ~ 10* K. In the
final snapshot on Panel f, the hot, tenuous flux rope and
relatively colder, massive condensation appear as two dis-
tinct populations in the lower left and upper right corners of
the distribution, respectively. In fact, two hot and tenuous
populations can be distinguished as two lines of increased
volume aligned with the pressure isocontours and hence at
approximately uniform pressure. The left, upper population
corresponds to the atmosphere surrounding the flux rope,
while the right, lower population corresponds to the flux
surfaces on which the prominence resides. The latter are
tenuous because much of the material has condensed. The
hot flux rope centre appears as a vertical extension in the
right upper corner of the phase diagram.

4. Discussion

We performed 2.5D simulations of prominence formation
through the levitation-condensations mechanism, where the
basic simulation setup is taken as in Jenkins and Keppens
(2021). The original model of Kaneko and Yokoyama (2015)
has been further modified to include a density stratification
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profile that is fully consistent with the varying gravitational
acceleration (10) over the domain. A value of B, = 10 G
was taken for the background magnetic field at the bot-
tom of our simulation domain while the simulation of Jenk-
ins and Keppens (2021) at the same resolution had a 3 G
background field. This has implications for the magnitude
of Ohmic heating at the flux rope centre and hence the
amount of material that is able to condense.

4.1. Influence of heating models on prominence formation
4.1.1. Exponential heating models

The simulation performed with the exponential heating
model (15) closely matches the results from Jenkins and
Keppens (2021). However, in our case the material collects
in one main prominence body while it remained discon-
nected in different flux surfaces in the 10 G field simulations
of Jenkins and Keppens (2021). This is most likely a con-
sequence of the lower resolution taken in our simulations,
which leads to a slightly lower heating input from recon-
nection of subordinate flux ropes. Nevertheless, the large
central part of the flux rope remains as a dense and hot
region insusceptible to thermal instability, as evident from
the heating-cooling balance in Fig. 6. Indeed, following the
formation of the flux rope, the material bound by the flux
rope should be isolated from the strongest contributions
of the background heating as thermal conduction can no
longer transport this energy along field lines. Therefore, we
introduced a method to implement an ad hoc modification

to the heating profile so as to approximate the influence of
field line connectivity to the heating experienced within the
2.5D flux rope core.

This reduced exponential heating model leads to a sig-
nificantly cooler flux rope than its unmodified counterpart,
enabling radiative cooling to easily dominate over back-
ground heating. Strikingly, nearly all of the material in the
flux rope is found to cool and rain down into the promi-
nence, turning the flux rope into a cavity with densities of
the order of 10716 g cm™3. Although similar results were
found before, this is the first time it has been demonstrated
with a field strength as high as 10 G. The flux rope centre is
much cooler than in previous simulations without reduced
heating and even hosts in situ condensations. In the final
stages of the simulation, the flux rope temperature increases
to order 10 MK which is rather high compared to observed
cavity temperatures of 1.5 — 2.2 MK (Bak-Steslicka et al.
2019). Such an evolution is compounded by the high resis-
tivity value in our simulations leading to increased Joule
heating in the cavity combined with increased mass slip-
page at the prominence top.

4.1.2. Mixed heating models

The original study of Kaneko and Yokoyama (2015) in-
vestigated the effect of background heating H ~ B? and
‘H ~ p in a similar setup. They used a background magnetic
field of 3 G and an artificial cut-off value on the minimum
temperature to ensure numerical stability. In this work, we
performed simulations with the mixed heating model, de-
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pending on both B and p at the same time (model M), as
in Mok et al. (2008). Kaneko and Yokoyama (2017) also
briefly discuss a 3D simulation with anti-shearing motions
and (a, ) = (1,1), although their main result focuses on
an (a, f) = (2,0) configuration. In full agreement with the
results of Kaneko and Yokoyama (2015), model M only leads
to condensations in flux ropes formed through anti-shearing
motions. This can be explained by the increased magnetic
energy stored in the field by shearing motions, which act
to amplify B, (Fig. 7) and hence increase the local heating
rate within the flux rope. Moreover, regions throughout the
simulation domain where the magnetic pressure is high, like
the converging loop footpoints and the flux rope edges, also
experience a high heating rate that leads to unfavourable
conditions for the condensation process. Hence, for those
simulations involving anti-shearing motions, only the bot-
tom of the flux rope and lower atmosphere with increased
density could provide sufficient radiative losses to initiate
the thermal instability and lead to the formation of one
large monolithic condensation in the flux rope and a string
of coronal rain blobs in the surrounding atmosphere. Then,
as already mentioned, our adoption of a 10 G background
field strength, although bringing us closer to observational
values (Casini et al. 2003; Wang et al. 2020), increases the
core heating rate even further.

As mentioned above, attempts to form condensa-
tions with the combined use of shearing motions and B-
dependent heating models had thus far proven unsuccess-
ful. Here, we introduced the physically motivated dynamic
masked heating reduction throughout the flux rope inte-
rior, and this is shown to lead to successful prominence
formation. Indeed, as anti-shearing motions are not com-
monly observed along PILs (Gibb et al. 2014; Mackay 2015,
where differential rotation usually increases the shear of
magnetic arcades), it was previously highly puzzling as to
how a prominence could form under ‘typical’ solar condi-
tions since 2.5D models indicated such behaviour would
categorically prohibit prominence formation when adopt-
ing B-dependent background heating. Moreover, the spon-
taneous coronal rain phenomenon reported here indicates
that anti-shearing motions may decrease magnetic energy
too substantially to consistently explain prominence forma-
tion.

4.2. (Additional) influence of Joule heating

For all of the setups presented here, we adopted a constant
1 value for the resistivity throughout the simulation space
and time. This permits a range of resistive evolutions within
the simulations, such as magnetic reconnection (but see also
Section 4.4), with perhaps the most ubiquitous of them be-
ing the dissipation of strong currents as Joule heating n|j|?.
In Table 2, we quantify the magnitude of this Joule heating
at two typical locations, and compare it against the contri-
bution from the assumed background heating model.

In the centre of the flux rope at the end of the simu-
lation, we find the Joule heating contribution to be of the
same order of magnitude, but in all cases smaller than the
contribution of the background heating model. During the
preceding formation process, however, the picture is quite
the opposite with the Joule heating contributing a consid-
erable amount of energy to the local plasma (cf. the alter-
nating hot shells in Jenkins and Keppens 2021), most sig-
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Heating Joule

(erg cm—3 s71) Background

Model E RE M1 RM1

FR centre 8.5e-5 8.3e-5 T7.5e-d5 8.5e-H
(final snapshot) | 6.3e-4 1.9e-4 5.4e-4 2.8e-4

Reconnection sites | 1.4e-1 1.4e-1 2.4e-1 1.le-1
(t = 1888 s) 1.1e-3 1.le-3 1.5e-3 1.le-3

Table 2: Compared magnitude of Joule and background
heating for all heating models. The former is usually smaller
or comparable to the latter, except for locations of recon-
nection and mass slippage, i.e. strong localised currents.

nificantly at the footpoint locations during their migration
towards the PIL.

It is clear that the evolutions within the simulations
lead to the generation of strong currents. In all cases, the
influence that these currents have on the thermodynamic
properties are directly proportional to the magnitude of the
assumed resistivity 7 since the Joule heating scales linearly
with it. In the current simulation, we deliberately overes-
timated the magnitude of this resistivity so as to assist in
the flux rope formation process - a magnitude that was
necessarily above the numerical resistivity limit set by the
resolution. In future simulations we may relax this overes-
timation, as an increase in spatial resolution will similarly
decrease the restriction on the resolvable resistivity. Sub-
sequent current enhancements may peak to higher values
with smaller extents, depositing the equivalent energy, but
we nevertheless suggest this leading to an overall reduc-
tion in the amplitude of the associated Joule heating across
the simulation domain. The non-linear nature of these sim-
ulations requires, however, dedicated studies so as to ac-
curately conclude the influence of these modifications. For
more dynamic scenarios, one may also explore the influ-
ence of the spatially varying ‘anomalous’ prescriptions, as
in Zhao et al. (2017) and Ruan et al. (2020).

4.3. Towards increased realism in prominence simulations

Despite the ever-increasing body of work on the coronal
heating problem, no single heating mechanism or combi-
nation thereof has yet been deemed the definitive solu-
tion (remaining key questions are highlighted by Klimchuk
2015). How this heating affects prominence formation is
here shown to differ between various parametric models.
Specifically, the timescale on which instability occurs, de-
creases for parametric models, as seen on Fig. 9, which
also indicates that imposing a time-independent exponen-
tial heating background without differentiating between the
flux rope and the surrounding atmosphere imposes a non-
negligible residual heating rate inside the flux rope, affect-
ing the onset of thermal instability: it was shown that ap-
plying a heating reduction inside the flux rope decreases
this time significantly. Then, for models (R)M1, we found
the directional choice of shearing motions to have a large
impact, explaining why condensations appear at a slightly
later time for the simulation that was paired with positive
shearing despite employing the reduced heating model. It
is thus expected that the same reduced heating setup with
anti-shearing motions would instead lead to a considerably
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earlier development of condensations compared to the stan-
dard M1 setup.

In Table 1, we list the nya.x and Ty, characteristics
of the prominences towards the end of the simulations,
as formed by the different heating models. Despite the
different models employed, the maximum number density
and minimum temperature are comparable for most heat-
ing prescriptions, indicating that the physics governing the
prominence material, once formed, is independent of the
heating prescriptions explored here. Furthermore, promi-
nence observations summarised by Parenti (2014) list num-
ber densities ranging from 10° — 10'* ¢cm™3, which shows
that the values obtained in all our simulations are in good
agreement. The same may be said for the core temperature
of the prominences of our simulations, which is reported
by the same author to have a range of 7500 — 9000 K.
The spatial dimensions of our simulated prominences are,
however, on the smaller side of observed widths between
1 — 10 Mm resulting from the relatively small computa-
tional domain. Pressures inside the prominence are found
in the range 0.08 — 0.41 dyn/cm? for models E and M1 and
in the range 0.05—0.64 dyn/cm? for their reduced counter-
parts, in perfect correspondence with observations (Parenti
2014).

Panel a of Fig. 10 clearly shows evaporation of promi-
nence material for models (R)E, which is found to occur at
the prominence top where the cool material resides next to
the hot flux rope core. This is possibly a result of Joule heat-
ing through the large perpendicular currents, which could
provide a net heating effect in the neighbouring parts of the
prominence.

One distinct difference arises between the average
prominence densities of models with and without heating
reduction in Fig. 9: the former have lower average densities.
We calculated the distributions of prominence density and
pressure to seek an explanation. Models RE, RM1 produce
very peaked distributions around the (lower) average val-
ues, indicating that the resulting prominences are largely
uniform in pressure and density. The uniform region takes
up most of the prominence, which does show stratification
at top and bottom ends. For model M1, the distributions
have a larger standard deviation but are still rather peaked,
although around multiple higher density or pressure values.
For model E, the distributions are much broader, pointing
to prominences with a strongly pronounced internal den-
sity and pressure stratification, which clearly appears on a
vertical profile taken within the prominence. This stratifi-
cation can be solely attributed to the steady exponential
heating background, which imposes a vertical stratification
inside the prominence body instead of a stratification along
field lines as would be expected for plasma bound to the
magnetic field (Blokland and Keppens 2011a,b). Indeed,
a similar stratification is observed in the bottom part of
the prominence that escapes the modified heating mask of
model RE — a comparison between Figs. 2 and 5 indicates
how the lowest-most extent of the prominence lies outside
the ellipse. In particular, the part of the prominence for
model RE inside the reduced heating mask — which has
almost uniform density and pressure — is seen to extend
further horizontally in the magnetic dips compared to the
bottom end due to the different thermodynamic properties
of the plasma, more specifically due to a different pressure
scale height. A vertical cut along the prominence, featured
on Fig. 12, clearly shows an exponential density profile in

p, T,H along x =0 at t =8492 s.
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Fig. 12: Vertical profile of density, temperature and heat-
ing rate through the prominence for model RE. The density
varies exponentially in the lower part of the prominence
and is more uniform in the upper part inside the heating
mask.

the prominence material outside the reduced heating mask,
and almost uniform conditions above the location where
the heating mask is applied. Such a feature, in particular,
provides a particularly strong argument as to why an expo-
nential background should not be applied indiscriminately
to 2.5D prominence formation in flux ropes: not only does
the exponential influence the timescales, but also the strat-
ification of plasma properties within the flux rope - a key
component in synthesising any resulting simulation as an
observation (e.g. Jenkins and Keppens 2022).

To compare our obtained prominence masses against
observations, we multiply the mass per unit length by a
typical flux rope or prominence length of 100 Mm — this as-
sumption agrees with the ¢ parameter used in the reduced
heating prescription (21), although the prominence plasma
rarely extends down towards the chromospheric footpoints
of a flux rope and this estimation hence gives an upper
limit. The estimated prominence masses then lie between
2.3 — 8.3 x 10" g, a similar order of magnitude to pre-
vious simulation results (Jenkins and Keppens 2021), but
still below the typical inferred values from observations of
10 — 2 x 10'® g (Parenti 2014). Hence, the inclusion of
more-realistic considerations for the heating, however valid,
do not address the outstanding issue of creating more ‘re-
alistic’ prominences in terms of order-of-magnitude total
mass content. Still, the reduced heating approach does in-
crease the prominence masses compared to the other heat-
ing models. The larger masses can generally be attributed
to the increased net energy loss rate due to the decrease in
background heating, which in turn makes a larger portion
of the flux rope more prone to thermal instability. The cor-
respondence between observational and simulation number
densities and temperatures, yet the persistent underesti-
mation for total mass content indicates that the simulation
domain and subsequent dimensions of the ab initio promi-
nences are smaller than present within the actual solar at-
mosphere. The consideration of both a larger domain, and
one that includes a chromosphere, would provide the coro-
nal flux rope with an abundance of additional material,
as already shown with the realistic prominence mass val-
ues found in the work of Zhao et al. (2017). Moreover, the
justification for the artificial heating reduction employed
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in our 2.5D simulations is automatically accounted for in
3D simulations, since field-aligned thermal conduction is
unable to efficiently transport energy towards the middle
of the flux rope. We thus envision the combination of a
3D setup as in Kaneko and Yokoyama (2017) that imple-
ments localised heating considerations and drives the for-
mation of a flux rope via positive shearing motions with
the presence of a chromosphere, to be the natural next
step. Moreover, the reduced heating model presented in
this work based on common assumptions in 1D prominence
formation models can benefit from recent progress, for ex-
ample by Huang et al. (2021), who combined evaporation
and injection into one model. Extending our setup as de-
scribed above could additionally incorporate these effects
in the current levitation-condensation model by supplying
localised heating in the chromosphere. It is anticipated that
the above aspects will be crucial in both further advancing
these models towards self-consistency, and facilitating effec-
tive comparisons against observations. The results obtained
in this paper hence will, and should, one day be superseded
by more realistic models of a complete solar atmosphere.

4.4. Additional results: slippage and oscillations

Asreported in earlier work with the same setup, the high re-
sistivity value in our simulations enhances the effect of mass
slippage over the field lines (Jenkins and Keppens 2021;
Low et al. 2012). Due to this effect, the prominence body
as a whole performs motions perpendicular to the poloidal
magnetic field, where through resistive dissipation it sinks
towards the bottom of the simulation domain. We observe
this phenomenon in all our simulations, with its typical sig-
nature of increased current density at the slippage sites. In
a benchmark simulation, where resistivity was switched off
after the formation of the flux rope, this slippage effect was
all but eliminated.

The observed mass slippage also affects the promi-
nence oscillations reported in this work. Condensations
form at different heights throughout the flux rope on dis-
tinct poloidal field lines. After falling down, they perform
oscillatory motions about x = 0 with different periods, as
is clearly visible in Fig 4. The periodicity is governed by
the pendulum model, with dependence on the local radius
of curvature of the magnetic field (Arregui et al. 2018).
The oscillations found in this work occur spontaneously in
response to evolving condensation formation and do not
require an imposed perturbation. Longitudinal oscillations
have been invoked to explain counter-streaming motions in
prominences (Zirker et al. 1998), as they have been found in
other simulations of prominence formation (e.g. Xia et al.
2011). An analysis of the oscillations along selected field
lines — using the method from Liakh et al. (2020) - for
model RE indeed reveals a period dependence on height,
where the period increases from top of the prominence (re-
gion closest to the centre of the host flux rope) to bottom
with decreasing the radius of field curvature (the accompa-
nying analysis is included in a recent conference proceeding,
Brughmans and Keppens 2022). In particular, oscillation
damping times also show a height dependence. Oscillations
are even temporarily amplified inside the top regions of the
prominence as well as in its bottom part, as was reported for
the first time by Liakh et al. (2020) and Liakh et al. (2021).
Again from the benchmark simulation without resistivity,
we find that in general, mass slippage decreases the appar-
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ent periods and increases the apparent damping time. We
note that the oscillations observed here are plane-projected
manifestations of longitudinal oscillations. Observations of
longitudinal prominence oscillations yield typical periods of
50—60 minutes (Arregui et al. 2018), somewhat longer than
the periods of 5 — 10 minutes reported in our work, which
again underlines the need to consider larger simulation do-
mains and full 3D models with line-tied flux rope ends in
future works.

4.5. Condensation velocities and phase space

An analysis of the maximum velocity over the domain pro-
vides further insight in the formation and evolution of con-
densations. During the formation phase, inflow velocities
of 55 — 100 km/s are found. These velocities decrease after
the formation of the initial condensation for models M1, RM1,
but for the exponential models, subsequently, velocities up
to 190 km/s are observed within those falling condensa-
tions that originate near the apex of the flux rope. These
high velocities, in excess of those anticipated from free fall
acceleration, are a consequence of pressure evolution associ-
ated with the formation of condensations at other locations
along the same flux surface. This surplus of kinetic energy
driven by dramatic pressure evolution within the exponen-
tial models is the reason why the material performs damped
oscillations with large initial amplitudes after formation.

The phase space evolution in Fig. 11 featured a non-
isobaric evolution of the thermal instability for model RE.
Models E, M1, and RM1 also lead to a very similar evolution,
although in the very onset of thermal instability, the distri-
bution follows the pressure isocontours a bit longer than for
model RE. The non-isobaric evolution of the condensation
process does not come as a surprise: the inclusion of gravity
introduces non-isobaric dynamics — Jenkins and Keppens
(2021) already found baroclinicity localised to the conden-
sations. In short, the onset of thermal instability visually
matches isobaric conditions, but not far into the linear evo-
lution, the isochoric criterion becomes more appropriate as
the temperature decreases faster than the density increases
(Xia et al. 2012). Moschou et al. (2015) also arrived at this
conclusion by identifying the dominant instability criterion
in the thermally unstable regions associated with coronal
rain.

5. Conclusions

We performed 2.5D simulations of prominence formation
through levitation-condensation with two classes of heat-
ing models, and an additional ad hoc modification for 2.5D
simulations that approximates the 3D flux rope structure,
and tracks the flux rope during runtime based on magnetic
curvature. Exponential heating models lead to larger promi-
nences but have a high residual heating rate inside the
flux rope and prominence, while the mixed models have
the more realistic assumptions but do not produce con-
densations when combined with positive shearing motions.
Both of these inconsistencies are overcome by the reduced
heating mask: the reduced exponential model leads to large
condensations, almost at the lower edge of observed masses
for whole prominences, and simultaneously eliminates the
residual flux rope heating, thus creating a much cooler
flux rope and prominences with almost uniform density
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and pressure. Crucially, those models with both magnetic-
field-strength-dependent heating and the ad hoc reduction
mask, combined with shearing motions, now lead to the
successful formation of condensations. As both classes of
heating models are shown to lead to prominences with dif-
ferent evolutions and morphologies but very similar phys-
ical properties, taking these models to either a larger 2D
or even fully 3D domain will likely overcome many of the
problems and inconsistencies that continue to reside within
our simulations, and in turn further increase the simulated
prominence masses. Finally, a phase-space visualisation of
the condensation process describes neither isobaric nor iso-
choric behaviour, but rather a combination of the two, with
a state of constant pressure along flux surfaces recovered
once force-balance is achieved within the flux rope.

A natural progression of this work is to extend the setup

to 3D, using a larger simulation domain with the inclusion
of a chromosphere. This will enable us to assess the effect
of the mixed heating model on a flux rope formed through
positive shearing motions and whether the resulting promi-
nences can reach realistic masses. Indeed, the inclusion of
a chromosphere and transition region will drastically mod-
ify the energy balance of the model atmosphere, which will
have a large effect on stability provided by thermal conduc-
tion of energy towards the transition region, where it is radi-
ated away. The results of this work, which only considers a
coronal domain, could then be modified significantly in view
of this added realism, where perhaps thermal instability is
less likely to occur except when evaporation from the chro-
mosphere is taken into account. In fact, such a setup has
been successfully implemented by Xia and Keppens (2016).
It remains unclear how the cooling of the longest field lines
obtained by Kaneko and Yokoyama (2017) would be af-
fected by the presence of a chromosphere and transition
region.
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Appendix A: Flux rope tracking

We here set forth to describe the algorithm used to track
the flux rope during runtime. First, the 3D field curvature
is calculated over the domain using,

Kk =Db-Vb, (A1)

where b = B

T is the unit vector along the magnetic field.
Since there is no variation in the z-direction in our 2.5D
setup, the gradient in (A.1) has only non-trivial compo-
nents along x and y. The centre of the flux rope is then
detected as a point of minimal curvature as it corresponds
to a straight field line that locally is oriented directly out-of-
plane in the 2.5D representation. As we do not deliberately
displace the central axis of the flux rope in our simulations
(cf. Jenkins and Keppens 2021), we can assume that the
flux rope centre lies directly above the PIL and search for a
point (0,yo). This detection method is in accordance with
Yang et al. (2019), who found that weak curvature corre-
lates with a strong normal force (i.e. straight field lines in
2.5D) and strong curvature occurs in the neighbourhood of
points with a weak magnetic field (i.e. 3D O-points). The
flux rope edges are detected instead as local maxima in the
curvature, resulting from the dynamical evolution of the
flux rope in the surrounding atmosphere.

A.1. Detailed algorithm for tracking

Suppose an N x N grid with resolution Az x Ay is
given by a collection of points {(z;,y;) | ¢ = 1,...,N}.
The characteristics of the model ellipse are fixed by three
values: let yo be the height of the flux rope centre and
xp, = xo+b, Yo = yo +a the horizontal and vertical coordi-
nate of the corresponding edges, ascertained at the previous
simulation time. The new locations in the current timestep
are then determined by solving optimisation problems of
the locations and curvature, which are solved in a discrete
manner by looping over the AMR grids.

To find the flux rope centre, we solve the following op-
timisation problem,

Maximise y;

such that |z;| < Awx,

K(Z,y;) is minimal and < 0.01,

|yl_yo|<da
0<?<N.

If no new location of minimal curvature satisfying these con-
ditions is found, the maximal allowed jump d is increased
by 10% and the problem solved again, up to a maximum of
d = 0.2. Here, d varies throughout the simulation to accom-
modate the more dynamic periods of flux rope formation
and prevent ‘overshooting’. Its value in code units depends
on the variable timestep At and is given by

1
d= {10At

After the coordinate yo has been found, b is found by
looking for maxima of x over a horizontal strip at height

if yo, Ty, Yy, have not all been found,

A2
if yo, Ty, Yy, have all been found. (A-2)

yo while a is found in the same way over a vertical strip at
zo = 0. To find b, the following problem is solved,

Maximise z;

such that |y; — yo| < Ay,

x; > 0,

k(x;,y;) is maximal,
|z; — x| < 5d,
0<i<N.

If the above problem has no solution, d is again increased in
steps of 10% until it reaches d = 0.1. While approximately
d < 45At, we first look for solutions x; > x; that increase
the dimensions of the flux rope since it is expanding for
most of its dynamic evolution, but this condition is relaxed
when no solution is found. The optimisation problem for
finding the location of the vertical edge y, of the flux rope
is similar, with z; ; interchanged with y; 4.

A.2. Flux rope tracking results

The tracked location of the flux rope centre is shown to
oscillate as a result of mergers between the primary and
subsequent subordinate flux ropes (cf. Jenkins and Keppens
2021). We find an average initial period of 280 — 300 s.

The magnetic flux through the tracked flux rope is ap-
proximated as ® = B,mab, where B, is taken to be the field
strength reached in the flux rope centre. The obtained val-
ues are hence rather an order-of-magnitude estimate, more
so since the horizontal length b is underestimated after the
end of the flux rope formation. We find the estimated mag-
netic flux bound by the flux rope, across models, to be of
order 10 Mx, consistent with earlier simulations (e.g. Zhao
et al. 2017) yet several orders of magnitude below observa-
tional results (e.g. 102! Mx in Dissauer et al. 2018) which
leads to the conclusion that we are working with a small
flux rope in these simulations.

The tracked flux rope is not always in a 1-to-1 corre-
spondence with the actual flux rope. First, the tracking
algorithm can suffer from mis-identifications whenever the
field topology undergoes a sudden evolution during, for in-
stance, flux rope mergers, but the shape is recovered after a
few time units. Second, the assumption of a perfectly ellip-
tic poloidal field will by definition exclude some portions of
the flux rope immediately above the X-point as the topol-
ogy is deformed by a combination of magnetic pressure and
tension associated with the ongoing reconnection (cf. Jenk-
ins and Keppens 2021). Third, once the footpoint driving
motions are switched off the flux rope is assumed to be
fully formed. However, due to the large value of 7 main-
tained here on out, a slower diffusion of field lines leads to
the expansion of the flux rope partially out of the upper
domain boundary. After this time, the previous methods
and justifications for defining the edge of the flux rope,
through curvature features alone, are no longer applicable.
To avoid inconsistencies and mis-identifications, we opt to
fix the horizontal half-length b from the moment the driv-
ing velocities cease, and update b if and only if a higher
value is detected. Hence, as time progresses, the detected
dimensions tend to underestimate the actual size of the flux
rope. An example of this underestimation can be observed
in Fig. 2, panel d.

Article number, page 19 of 19



	1 Introduction
	2 Numerical setup and equations
	2.1 Equations and physics
	2.2 Simulation setup
	2.3 Boundary conditions
	2.4 Heating models
	2.4.1 Exponential and mixed heating models
	2.4.2 Reduced heating model


	3 Results
	3.1 Condensation phase
	3.1.1 Exponential heating model
	3.1.2 Mixed heating models
	3.1.3 Reduced exponential heating model
	3.1.4 Reduced quasi-magnetic heating model

	3.2 Comparison of the heating models
	3.3 Phase space evolution

	4 Discussion
	4.1 Influence of heating models on prominence formation
	4.1.1 Exponential heating models
	4.1.2 Mixed heating models

	4.2 (Additional) influence of Joule heating
	4.3 Towards increased realism in prominence simulations
	4.4 Additional results: slippage and oscillations
	4.5 Condensation velocities and phase space

	5 Conclusions
	A Flux rope tracking
	A.1 Detailed algorithm for tracking
	A.2 Flux rope tracking results


